Superconducting nanowires fabricated using molecular templates.
نویسندگان
چکیده
The application of single molecules as templates for nanodevices is a promising direction for nanotechnology. We use suspended deoxyribonucleic acid molecules or single-walled carbon nanotubes as templates for fabricating superconducting devices and then study these devices at cryogenic temperatures. Because the resulting nanowires are extremely thin, comparable in diameter to the templating molecule itself, their electronic state is highly susceptible to thermal fluctuations. The most important family of these fluctuations are the collective ones, which take the form of Little's phase slips or ruptures of the many-electron organization. These phase slips break the quantum coherence of the superconducting condensate and render the wire slightly resistive (i.e., not fully superconducting), even at temperatures substantially lower than the critical temperature of the superconducting transition. At low temperatures, for which the thermal fluctuations are weak, we observe the effects of quantum fluctuations, which lead to the phenomenon of macroscopic quantum tunneling. The modern fabrication method of molecular templating, reviewed here, can be readily implemented to synthesize nanowires from other materials, such as normal metals, ferromagnetic alloys, and semiconductors.
منابع مشابه
Investigations of Magnetic Properties Through Electrodeposition Current and Controlled Cu Content in Pulse Electrodeposited CoFeCu Nanowires
CoFeCu nanowires were deposited by pulsed electrodeposition technique into the porous alumina templates by a two-step mild anodization technique, using the single-bath method. The electrodeposition was performed in a constant electrolyte while Cu constant was controlled by electrodeposition current. The electrodeposition current was 3.5, 4.25, 5 and 6 mA. The effect of electrodeposition current...
متن کاملGrowth and Characterization of Iron Nanowires Into Anodized Aluminum Oxide Templates Using Electrodeposition Technique
The Fe nanowires were prepared by Ac electrodeposition method. The two steps anodized aluminum oxides (alumina) were used as templates for electrodeposition of magnetic nanowires. Sulfuric acid was used to anodize aluminum. The pours diameter and growth rate of alumina were investigated. The FeSO4 electrolyte was used for growth of nanowires. The prepared magnetic nanowires were characterized b...
متن کاملساخت و بهینهسازی تمپلتهای اکسید آلومینیوم جهت سنتز نانوسیمهای فریت استرانسیوم و مقایسه آن با نانوپودرهای فریت استرانسیوم سنتز شده با روش سل- ژل
In this research, ordered porous anodic templates with 30 nm diameter and 15 µm thickness were prepared by using double anodization process. Dip coating method was employed to synthesize strontium ferrite in the form of nanowires in sol dilution. Ferrite nanopowders were also synthesized using sol gel method. The characterization of the nanostructures were examined by X-Ray Diffraction (X...
متن کاملLa2xSrxCuO4 superconductor nanowire devices
La2-xSrxCuO4 nanowire devices have been fabricated and characterized using electrical transport measurements. Nanowires with widths down to 80 nm are patterned using high-resolution electron beam lithography. However, the narrowest nanowires show incomplete superconducting transitions with some residual resistance at T = 4 K. Here, we report on the refinement of the fabrication process to achie...
متن کاملFabrication of metallic nanowires and nanoribbons using laser interference lithography and shadow lithography.
Ordered and free-standing metallic nanowires were fabricated by e-beam deposition on patterned polymer templates made by interference lithography. The dimensions of the nanowires can be controlled through adjustment of deposition conditions and polymer templates. Grain size, polarized optical transmission and electrical resistivity were measured with ordered and free-standing nanowires.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Advanced materials
دوره 22 10 شماره
صفحات -
تاریخ انتشار 2010